PARTICULATE NATURE OF MATTER MISCONCEPTIONS HELD BY MIDDLE AND HIGH SCHOOL STUDENTS IN TURKEY

Hasan Özgür Kapici, Hakan Akcay

Abstract


Misconceptions are one the biggest troubles for both teachers and students. In order to have scientifically valid knowledge, students should have meaningful conceptual understanding. Researchers have been designing studies based on different teaching methods so as to reach beneficial outcomes to handle with misconceptions. In this study, the main purpose is to reveal misconceptions about particulate nature of matter held by middle and high school students in Turkey by examining the related studies done since 2010. In addition, another goals are to see which kind of data gathering instruments have been used frequently and to determine these studies have been implemented in which level, whether middle school or high school. With specific keywords and criteria, 21 related articles were reached and examined. The findings shows that open ended questionnaire or interview forms are the most frequent instruments in order to gather data in the studies which were done for diagnosing misconceptions about particulate nature of matter. The participants of studies are usually from middle school students. Lastly, misconceptions are common among students.

 

Article visualizations:

Hit counter


Keywords


particulate nature of matter, misconception, middle school students, high school students

Full Text:

PDF Academia.edu E R I C

References


Adadan, E., Irving, K. E. & Trundle, K. C. (2009). Impacts of multi-representational instruction on high school students’ conceptual understandings of the particulate nature of matter. International Journal of Science Education, 31(13), 1743-1775.

Adadan, E. & Savasci, F. (2012). An analysis of 16-17 year-old students’ understanding of solution chemistry concepts using a two-tier diagnostic instrument. International Journal of Science Education, 34(4), 513-544.

Ausubel, D. P. (1960). The use of advance organizers in the learning and retention of meaningful verbal material. Journal of Educational Psychology, 51(5), 267.

Aslan, S. (2014). Analysis of students’ written scientific argument generate and evaluation skills. Journal of Theory and Practice in Education, 10(1), 41-74.

Ayas, A. & Özmen, H. (2002). Lise kimya öğrencilerinin maddenin tanecikli yapısı kavramını anlama seviyelerine ilişkin bir çalışma. [A study of students’ level of understanding of the particulate nature of matter at secondary school level]. Boğaziçi Üniversitesi Eğitim Dergisi, 19(2), 45-60.

Ayas, A., Özmen, H. & Çalık, M. (2010). Students’ conceptions of the particulate nature of matter at secondary and tertiary level. International Journal of Science and Mathematics Education, 8, 165-184.

Balım, A. G. & Ormancı, Ü. (2012). İlköğretim öğrencilerinin “maddenin tanecikli yapısı” ünitesine yönelik anlama düzeylerinin çizim yoluyla belirlenmesi ve farklı değişkenlere göre analizi. [Determining the level of primary school students’ understanding of the chapter “structure of matter” through drawings and analyzing of different variables]. Eğitim ve Öğretim Araştırmaları Dergisi, 1(4), 255-265.

Boz, Y. (2006). Turkish pupils’ conceptions of the particulate nature of matter. Journal of Science Education and Technology, 15(2), 203-213.

Cheng, M. M. W. & Gilbert, J. K. (2014). Students’ visualization of metallic bonding and the malleability of metals. International Journal of Science Education, 36(8), 1373-1407.

Chi, M. T. H. (1992). Conceptual change within and across ontological categories: Examples from learning and discovery in science. In R. Giere (Ed.), Cognitive Models of Science: Minnesota Studies in the Philosophy of Science, (pp. 129-186). Minneapolis: University of Minnesota Press.

Chi, M. T. H., Slotta, J. D. & Leeuw, N. (1994). From things to processes: a theory of conceptual change for learning science concepts. Learning and Instruction, 4, 27-43.

Çayan, Y. & Karslı, F. (2015). The effects of the problem based learning approach to overcome students’ misconceptions on physical and chemical change. Kastamonu Eğitim Dergisi, 23(4), 1437-1452.

Çökelez, A. & Yalçın, S. (2012). The analysis of the mental models of students in grade 7 regarding atom concept. Elementary Education Online, 11(2), 452-471.

De Vos, W. & Verdonk, A. H. (1996). The particulate nature of matter in science education and in science. Journal of Research in Science Teaching, 33(6), 657-664.

Demircioğlu, G., Altuntaş Aydın, M. & Demircioğlu, H. (2012). Kavramsal değişim metninin ve üç boyutlu modelin 7.sınıf öğrencilerinin atomun yapısını anlamalarına etkisi. [The effect of conceptual change text and three dimensional model with on 7th grade students’ understanding about the structure of atom]. Bayburt Üniversitesi Eğitim Fakültesi Dergisi, 7(2), 70-96.

Demircioğlu, H., Demircioğlu, G., Ayas, A. & Kongur, S. (2012). Onuncu sınıf öğrencilerinin fiziksel ve kimyasal değişme kavramları ile ilgili teorik ve uygulama bilgilerinin karşılaştırılması. [A comparison of theoretical and practical knowledge about physical and chemical changes the concept of tenth grade students]. Türk Fen Eğitimi Dergisi, 9(1), 162-181.

Demircioğlu, H., Dinç, M. & Çalık, M. (2013). The effect of storylines embedded within context-based learning approach on grade 6 students’ understanding of ‘physical and chemical change’ concepts. Journal of Baltic Science Education, 12(5), 682-691.

Demircioğlu, H., Vural, S. & Demircioğlu, G. (2013). Üstün yetenekli öğrencilerin zihinsel modelleri: Maddenin tanecikli yapısı. [Gifted students’ mental models: The particulate nature of matter]. Eğitim Bilimleri Dergisi, 38, 65-84.

Doğan, D. & Demirci, B. (2011). High school chemistry students’ and prospective chemistry teachers’ misconceptions about ionic bonding. Inonu University Journal of the Faculty of Education, 12(1), 67-84.

Driver, R. & Easley, J. A. (1978). Pupils and paradigms: A review of literature related to concept development in adolescent science students. Studies in Science Education, 5, 61-84.

Driver, R., Guesne, E. & Tiberghien, A. (1985). Children’s ideas and the learning of science. In R. Driver, E. Guesne & A. Tiberghien (Eds.), Children’s Ideas in Science (pp. 1-9). Philadelphia: Open University Press.

Duit, R., Treagust, D. & Widodo, A. (2008). Teaching science for conceptual change: Theory and practice. In S. Vosniadou (Ed.), International Handbook of Research on Conceptual Change (pp. 629-646). New York, USA: Routledge.

Duit, R. & Treagust, D. (2003). Conceptual change: A powerful framework for improving science teaching and learning. International Journal of Science Education, 25, 671-688.

Ergün, A. & Sarıkaya, M. (2014). Maddenin parçacıklı yapısı ile ilgili kavram yanılgılarının giderilmesinde modele dayalı aktivitelerin etkisi. [The effects of the model based activities on overcoming the misconceptions regarding the particulate natured structure of the matter]. E-Journal of New World Sciences Academy, 9(3), 248-275.

Gabel, D. L. (1993). Use of the particulate nature of matter in developing conceptual understanding. Journal of Chemical Education, 70(3), 193-194.

Geban, Ö. ve Bayır, G. (2000). Effect of conceptual change approach on students’ understanding of chemical change and conversation of matter. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 19, 79-84.

Gökulu, A. (2013). Bilgisayar destekli öğretimin etkisinin incelenmesi ve maddenin tanecikli yapısı konusu ile ilgili öğrencilerin kavram yanılgılarının tespiti. [Examination of computer supported teaching and diagnosing students’ misconceptions about particulate nature of matter]. International Journal of Social Science, 6(5), 571-585.

Griffiths, A. K. & Preston, K. R. (1992). Grade-12 students’ misconceptions relating to fundamental characteristics of atoms and molecules. Journal of Research in Science Teaching, 29(6), 611-628.

Haidar, A. H. (1997). Prospective chemistry teachers’ conceptions of the conservation of matter and related concepts. Journal of Research in Science Teaching, 34(2), 181-197.

Harrison, A. G. & Treagust, D. F. (1996). Secondary students’ mental models of atoms and molecules: implications for teaching chemistry. Science Education, 80(5), 509-534.

Karagöz, Ö. & Sağlam Arslan, A. (2012). İlköğretim öğrencilerinin atomun yapısına ilişkin zihinsel modellerinin analizi. [Analysis of primary students’ cognitive models about the structure of atom]. Türk Fen Eğitimi Dergisi, 9(1), 132-142.

Kavak, N. (2007). Maddenin tanecikli doğası hakkında ilköğretim 7.sınıf öğrencilerinin imaj oluşturmalarına rol oynama öğretim yönteminin etkisi. [The effect of role-play instruction method on 7th grade students’ forming mental images about the particulate nature of matter]. Gazi Eğitim Fakültesi Dergisi, 27(2), 327-339.

Kaya, G. & Ergun, M. (2012). Didaktiksel dönüşüm teorisine göre maddenin tanecikli yapısı ünitesinin incelenmesi. [An investigation of the particulate nature of matter unit according to didactic transposition theory]. İlköğretim Online, 11(4), 1101-1120.

Kıngır, S. & Geban, Ö. (2014). 10.sınıf öğrencilerinin kimyasal değişim konusundaki kavramları. [Tenth grade students’ concepts about chemical changes]. Türk Fen Eğitimi Dergisi, 11(1), 43-62.

Leblebicioğlu, G. (2012). 8.sınıf öğrencilerinin madde kavramını kavramsal anlamaları üzerine nitel çalışma. [Qualitative study of 8th graders’ conceptual understanding of the concept of matter]. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 43, 340-352.

Lee, O., Eichinger, D. C., Anderson, C. W., Berkheimer, G. D. & Blakeslee, T. D. (1993). Changing middle school students’ conceptions of matter and molecules. Journal of Research in Science Teaching, 30(3), 249-270.

Margel, H., Eylon, B. & Scherz, Z. (2008). A longitudinal study of junior high school students’ conceptions of the structure of materials. Journal of Research in Science Teaching, 45(1), 132-152.

Meşeci, B., Tekin, S. & Karamustafaoğlu, S. (2013). Maddenin tanecikli yapısı ile ilgili kavram yanılgılarının tespiti. [Determining the misconceptions about the structure of matter]. Dicle Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 9, 20-40.

Nakhleh, M. B. & Samarapungavan, A. (1999). Elementary school children’s beliefs about matter. Journal of Research in science Teaching, 36(7), 777-805.

Nakhleh, M. B., Samarapungavan, A. & Saglam, Y. (2005). Middle school students’ beliefs about matter. Journal of Research in Science Teaching, 42(5), 581-612.

Nyachwaya, J. M., Mohamed, A., Roehrig, G. H., Wood, N. B., Kern, A. L. & Schneider, J. L. (2011). The development of an open-ended drawing tool: an alternative diagnostic tool for assessing students’ understanding of the particulate nature of matter. Chemistry Education Research and Practice, 12, 121-132.

Ormancı, Ü. & Balım, A. G. (2014). Ortaokul öğrencilerinin madde konusuna yönelik fikirleri: Çizim yöntemi. [Middle school students’ ideas about matter: Drawing method]. İlköğretim Online, 13(3), 827-846.

Özalp, D. ve Kahveci, A. (2011). Maddenin tanecikli yapısı ile ilgili iki aşamalı tanılayıcı soruların ontoloji temelinde geliştirilmesi. Eğitim ve Sosyal Bilimler Dergisi, 191, 135-156.

Özmen, H. (2011a). Effect of animation enhanced conceptual change texts on the 6th grade students’ understanding of the particulate nature of matter and transformation during phase changes. Computers & Education, 57, 1114-1126.

Özmen, H. (2011b). Turkish primary students’ conceptions about the particulate nature of matter. International Journal of Environmental & Science Education, 6(1), 99-121.

Özmen, H. & Kenan, O. (2007). Determination of the Turkish primary students’ views about the particulate nature of matter. Asia-Pacific Forum on Science Learning and Teaching, 8(1), 1-15.

Öztuna Kaplan, A. & Boyacıoğlu, N. (2013). Çocuk karikatürlerinde maddenin tanecikli yapısı. [Particulate nature of matter in children’s comics]. Türk Fen Eğitimi Dergisi, 10(1), 156-175.

Palmer, D. H. (1999). Exploring the link between students’’ scientific and nonscientific conceptions. Science Education, 83(6), 639-653.

Pintrich, P. R., Marx, R. W. & Boyle, R. A. (1993). Beyond cold conceptual change: the role of motivational beliefs and classroom contextual factors in the process of conceptual change. Review of Educational Research Summer, 63(2), 167-199.

Posner, G. J., Strike, K. A., Hewson, P. W. & Gertzog, W. A. (1982). Accommodation of a scientific conception: toward a theory of conceptual change. Science Education, 66(2), 211-227.

Sanchez, G. & Valcarcel, M. V. (1999). Science teachers’ views and practices in planning for teaching. Journal of Research in Science Teaching, 36(4), 493-513.

Sarıkaya, M. & Ergün, A. (2014). İlköğretim ve ortaöğretim öğrencilerinin atom ve moleküllerin şekli üzerine bazı fiziksel etkenlerin etkisini anlamalarının araştırılması. [Investigating the primary and secondary school students’ understanding of the effects of some physical elements on the shape of the atoms and molecules]. Turkish Journal of Education, 3(3), 56-73.

Sherman, R. R. & Webb, R. B. (1988). Qualitative research in education: a focus. In R. R. Sherman & R. B. Webb (Eds.), Qualitative Research Methods in Education: Focus and Methods, (pp. 2-20). London: Falmer Press.

Tezcan, H. ve Salmaz, Ç. (2005). Atomun yapısının kavratılmasında ve yanlış kavramların giderilmesinde bütünleştirici ve geleneksel öğretimlerinin etkileri. [Effects of the traditional method and constructivist approach on the understanding of atomic structure and elimination of related misconceptions]. Gazi Eğitim Fakültesi Dergisi, 25(1), 41-54.

Treagust, D. F. & Duit, R. (2009). Multiple perspectives of conceptual change in science and the challenges ahead. Journal of Science and Mathematics, 32(2), 89-104.

Tsai, C. C. (1998). An analysis of scientific epistemological beliefs and learning orientations of Taiwanese eighth grade. Science Education, 82(4), 473-489.

Tsai, C.-C. (1999). Overcoming junior high school students’ misconceptions about microscopic views of phase change: a study of an analogy activity. Journal of Science Education and Technology, 8(1), 83-91.

Valanides, N. (2000). Primary student teachers’ understanding of the particulate nature of matter and its transformations during dissolving. Chemistry Education: Research and Practice in Europe, 1(2), 249-262.

Vermaat, H., Terlouw, C. & Dijkstra, S. (2003). Multiple representations in web-based learning of chemistry concepts. Proceedings of the 84th Annual Meeting of the American Educational Research Association, 1, 1-16.




DOI: http://dx.doi.org/10.46827/ejes.v0i0.302

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 Hasan Özgür Kapici, Hakan Akcay

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright © 2015-2023. European Journal of Education Studies (ISSN 2501 - 1111) is a registered trademark of Open Access Publishing Group. All rights reserved.


This journal is a serial publication uniquely identified by an International Standard Serial Number (ISSN) serial number certificate issued by Romanian National Library (Biblioteca Nationala a Romaniei). All the research works are uniquely identified by a CrossRef DOI digital object identifier supplied by indexing and repository platforms. All authors who send their manuscripts to this journal and whose articles are published on this journal retain full copyright of their articles. All the research works published on this journal are meeting the Open Access Publishing requirements and can be freely accessed, shared, modified, distributed and used in educational, commercial and non-commercial purposes under a Creative Commons Attribution 4.0 International License (CC BY 4.0).