L'APPROCHE DES CONCEPTS À L'ENSEIGNEMENT ET L'APPRENTISSAGE DES SCIENCES / THE CONCEPTS APPROACH TO TEACHING AND LEARNING PHYSICAL SCIENCES

Dimitri Nertivich

Abstract


Cet article présente un cadre plus étendu pour la question de la formation des concepts de sciences physiques et naturelles dans l'enseignement. Cette question, qui constitue un enjeu majeur pour l'apprentissage et l'enseignement des sciences, a de nombreuses dimensions. Les plus importantes sont liées à la construction et la constitution de la matière à enseigner, c'est-à-dire à la création du matériel d'enseignement et au travail des élèves et des enseignants dans la classe. Ces questions sont soulevées et discutées sur la base d'un long parcours d'études dans les domaines de recherche de l'apprentissage et de l'enseignement.

This article presents a broader framework for the issue of physical science concept formation in education. This question, which is a major issue for learning and teaching physical science, has many dimensions. The most important are related to the construction and constitution of the subject matter to teach, i.e., the creation of teaching materials and the work of students and teachers in the classroom. These issues are raised and discussed on the basis of a long trajectory of study in the research fields of learning and teaching.

 

Article visualizations:

Hit counter


Keywords


apprentissage, enseignement, concepts, sciences physiques et naturelles / learning, teaching, concepts, physical sciences

Full Text:

PDF

References


Arun, Z. (2017). Formation des enseignants et recherche en didactique des sciences. European Journal of Education Studies, 3(9), 206-216.

Arun, Z. (2018). Questions sur la formation initiale des enseignants en didactique des sciences: Une vision alternative. European Journal of Alternative Education Studies, 3(1), 44-53.

Barrow, L. H. (1987). Magnet concepts and elementary students’ misconceptions. In: J. Noval (Ed.), Proceedings of the Second International Seminar on Misconceptions and Educational Strategies in Science and Mathematics, (pp. 17-22). Cornell University: Ithaca, N.Y.

Castro, D. (2013). Light mental representations of 11-12 year old students. Journal of Social Science Research, 2(1), 35-39.

Castro, D. (2018). L’apprentissage de la propagation rectiligne de la lumière par les élèves de 10-11 ans. La comparaison de deux modèles d’enseignement. European Journal of Education Studies, 4(5), 1-10.

Cengiz, E. (2018). A different way of teaching the reflection of light: Using the clock model Science Activities, 55(3-4), 140-148.

Choudhary, F. R., Noor, H., & Javed, T. (2020). Epistemological beliefs and philosophical perspective of the Science and Mathematics teachers about the Nature of Science. Global Social Sciences Review, V(II), 356-369.

Dasen, P. R. (1983). Aspects fonctionnels du développement opératoire. Archives de Psychologie, 51, 57-60.

Erickson, G. (1994). Pupils' understanding of magnetism in a practical assessment context: The relationship between content, process and progression. In P. Fensham, R. Gunstone & R. White (eds), The content of science: A constructivist approach to its teaching and learning (pp. 80-97). London: Falmer Press.

Franse. R. (2008). Science is Primary. Onderzoeken en ontwerpen in groep 1 en 2. Nationaal Centrum voor Wetenschap en Technologie: Hands-on, Brains-on. Te verkrijgen via R. F ranse, science center NEMO.

Fratiwi, N. J., Samsudin, A., Ramalis, T. R., Saregar, A., Diani, R., Irwandani, I., Rasmitadila, R., & Ravanis, K. (2020). Developing MeMoRI on Newton’s Laws: for identifying students’ mental models. European Journal of Educational Research, 9(2), 699-708.

Georgiou, M., Ziogka, K., & Galani, L. (2020). Are pre-service teachers ready to write stories in the sciences? Interdisciplinary Journal of Environmental and Science Education, 16(4), e2220.

Grigorovitch, A. (2014). Children’s misconceptions and conceptual change in Physics Education: the concept of light. Journal of Advances in Natural Sciences, 1(1), 34-39.

Grigorovitch, A. (2018). Enseignement des sciences par projet et didactique : éléments théoriques pour une coordination. European Journal of Education Studies, 4(1), 174-183.

Grigorovitch, A., & Nertivich, D. (2017). Introduction to magnets for lower primary school students. European Journal of Education Studies, 3(3), 144-154.

Halimi, L. (1982) Découvrons et expérimentons. Paris: Nathan.

Hoang, V. (2022). Recherche et développement d'activités scientifiques pour la petite enfance. European Journal of Alternative Education Studies, 7(1), 114-123.

Kaliampos, G., & Ravanis, K. (2019). Thermal conduction in metals: mental representations in 5-6 years old children’s thinking. Jurnal Ilmiah Pendidikan Fisika ‘Al-BiRuNi’, 8(1), 1-9.

Kokologiannaki, V., & Ravanis, K. (2013). Greek sixth graders mental representations of the mechanism of vision. New Educational Review, 33(3), 167-184.

Maskur, R., Latifah, S., Pricilia, A., Walid, A., & Ravanis, K. (2019). The 7E learning cycle approach to understand thermal phenomena. Jurnal Pendidikan IPA Indonesia, 8(4), 464-474.

Nertivich, D. (2013). Magnetic field mental representations of 15-16 year old students. Journal of Advances in Physics, 2(1), 53-58.

Nertivich, D. (2014). Sciences activities in preschool age: the case of elementary magnetic properties. Journal of Advances in Humanities, 1(1), 1-6.

Nertivich, D. (2018). Concepts thermiques de base chez les élèves de 17 ans. European Journal of Education Studies, 4(2), 145-154.

Petrovici, C. (2008). Résultats d’une enquête sur les compétences et les rôles essentiels des instituteurs. Review of Science, Mathematics and ICT Education, 2(1/2), 97-109.

Raouf, K., Bellazaar, I., & Radi, M. (2016). Les difficultés inhérentes a la mobilisation des connaissances mathématiques dans la Physique, cas de la Mécanique au Collège. European Scientific Journal, 12, 185-198.

Rassaa, K. (2011). Concept de champ électrostatique : Modes de raisonnement des étudiants Tunisiens. Review of Science, Mathematics and ICT Education, 5(1), 39-58.

Ravanis, K. (2009). La transformación didáctica: de las materias académias a las prácticas escolares. In G. Pappas (Ed.), Actas de congreso “La lengua griega en América Latina” (pp. 143-149). Buenos Aires-Patras: Universidad de Patras.

Ravanis, K. (2020). Precursor models of the Physical Sciences in Early Childhood Education students’ thinking. Science Education Research and Praxis, 76, 24-31.

Ravanis, K. (2021). The Physical Sciences in Early Childhood Education: theoretical frameworks, strategies and activities. Journal of Physics: Conference Series, 1796, 012092.

Ravanis, K. (2022). Research trends and development perspectives in Early Childhood Science Education: an overview. Education Sciences, 12(7), 456.

Ravanis, K., & Papamichaël, Y. (1995). Procédures didactiques de déstabilisation du système de représentation spontanée des élèves pour la propagation de la lumière. Didaskalia, 7, 43-61.

Rodriguez, J., & Castro, D. (2014). Children's ideas of changes in the state of matter: solid and liquid salt. Journal of Advances in Humanities, 1(1), 1-6.

Saregar, A., Mulyani, H., Yetri, Y., Anugrah, A., & Ravanis, K. (2020). An analysis of epistemological learning barriers on Newton’s law material in engineering class. Journal of Innovation in Educational and Cultural Research, 1(2), 77-86.

Sotirova, E.-M. (2017). L’apprentissage en sciences expérimentales : la recherche et l’enseignement. European Journal of Education Studies, 3(12), 188-198.

Sotirova, E.-M. (2020). Réflexions sur les objectifs de l’éducation scientifique. European Journal of Education Studies, 7(2), 172-180.

Tin, P. S. (2018). Élaboration expérimentale des représentions mentales des élèves de 16 ans sur les concepts thermiques. European Journal of Education Studies, 4(7), 141-150.

Tin, P. S. (2019). Un cadre méthodologique pour la démarche d’investigation : l’exemple du changement d’état de l’eau à l’âge de 8 ans. European Journal of Education Studies, 6(4), 1-12.

Tin, P. S. (2022). Représentations mentales et obstacles dans la pensée des enfants de 6 et 11 ans sur la fusion de la glace. European Journal of Education Studies, 9(3), 130-139.

Ubawuike, A. B. (2018). Using guided inquiry-based approach to teach refraction: An experience with college students. Research Journal of Educational Studies and Review, 4(4), 49-54.

Voutsina L., & Ravanis, K. (2013). Magnetism and Gravity: mental representations of students 15-17 years old from a historical and teaching perspective. Journal of Social Science Research, 1(3), 49-57.

Wancham, K., Tangdhanakanond, K., & Kanjanawasee, S. (2023). Sex and grade issues in influencing misconceptions about force and laws of motion: An application of cognitively diagnostic assessment. International Journal of Instruction, 16(2), 437-456.




DOI: http://dx.doi.org/10.46827/ejes.v10i4.4738

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Dimitri Nertivich

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright © 2015-2023. European Journal of Education Studies (ISSN 2501 - 1111) is a registered trademark of Open Access Publishing Group. All rights reserved.


This journal is a serial publication uniquely identified by an International Standard Serial Number (ISSN) serial number certificate issued by Romanian National Library (Biblioteca Nationala a Romaniei). All the research works are uniquely identified by a CrossRef DOI digital object identifier supplied by indexing and repository platforms. All authors who send their manuscripts to this journal and whose articles are published on this journal retain full copyright of their articles. All the research works published on this journal are meeting the Open Access Publishing requirements and can be freely accessed, shared, modified, distributed and used in educational, commercial and non-commercial purposes under a Creative Commons Attribution 4.0 International License (CC BY 4.0).