Ekim Pekünlü, İsa Sağıroğlu, Cem Kurt, İlbilge Özsu


Duration of static stretching is the most crucial factor associated with static stretch-induced impairments in explosive muscular performances. The aim of this study was to investigate the acute residual effects of lower body short (S-SS) and long duration static stretching protocols (L-SS) on counter movement jump (CMJ) performances in skilled female combat athletes. Twelve well-trained female combat athletes (training experience: 11.5 ∓ 3.6 years) performed S-SS (6 min of total stretch duration) and L-SS (12 min of total stretch duration) separated by 48 hours in a randomized, balanced order. After each protocol, participants performed, respectively, counter movement jump with arm swing (CMJAS) and with hands on hip (CMJHH) separated by 30-second rest interval at the 15th second and 1st, 5th, 10th, 15th, and 20th minute of the 20-minute recovery period. An insignificant interaction effect was found for Protocol × Time in CMJ heights (p = 0.722) indicating that both S-SS and L-SS reduced CMJ heights to a similar extent over the course of 20 min recovery period. S-SS and L-SS led to a mean CMJ height reduction of 6.29% (p < 0.05, d = 0.603) and 6.74% (p < 0.05, d = 0.610), respectively. Greater than 50% of participants experienced a reduction in CMJAS height exceeding minimum detectable change score with 90% confidence at each time point during the recovery period without exception. Use of static stretching protocols ≥ 6 minutes prior to competitions and/or training sessions may lead to impairment in lower body explosive strength of well-trained female combat athletes that persists at least 20 minutes. This impairment may also indirectly hinder their sport-specific performance since combat sports include a great deal of movement patterns related to lower body explosive strength. 


Article visualizations:

Hit counter


flexibility, lower body, performance impairment, vertical jump, warm-up


Atkinson, G., & Nevill, A. M. (1998). Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med, 26(4), 217-238.

Avela, J., Kyrolainen, H., Komi, P. V., & Rama, D. (1999). Reduced reflex sensitivity persists several days after long-lasting stretch-shortening cycle exercise. J Appl Physiol (1985), 86(4), 1292-1300.

Behm, D. G., & Chaouachi, A. (2011). A review of the acute effects of static and dynamic stretching on performance. Eur J Appl Physiol, 111(11), 2633-2651. doi:10.1007/s00421-011-1879-2

Bradley, P. S., Olsen, P. D., & Portas, M. D. (2007). The effect of static, ballistic, and proprioceptive neuromuscular facilitation stretching on vertical jump performance. J Strength Cond Res, 21(1), 223-226. doi:10.1519/R-21046.1

Chaouachi, A., Castagna, C., Chtara, M., Brughelli, M., Turki, O., Galy, O., . . . Behm, D. G. (2009). Effect of warm-ups involving static or dynamic stretching on agility, sprinting, and jumping performance in trained individuals. J Strength Cond Res, 24(8), 2001-2011. doi:10.1519/JSC.0b013e3181aeb181

Church, J. B., Wiggins, M. S., Moode, F. M., & Crist, R. (2001). Effect of warm-up and flexibility treatments on vertical jump performance. J Strength Cond Res, 15(3), 332-336.

Comas, M., Valentino, K., Bridgett, D. J., & Hayden, L. C. (2014). The direct and interactive effects of physical abuse severity and negative affectivity on length of psychiatric hospitalization: evidence of differential reactivity to adverse environments in psychiatrically high-risk youth. Child Psychiatry Hum Dev, 45(2), 220-228. doi:10.1007/s10578-013-0394-6

Cornwell, A., Nelson, A. G., & Sidaway, B. (2002). Acute effects of stretching on the neuromechanical properties of the triceps surae muscle complex. Eur J Appl Physiol, 86(5), 428-434.

Costa, P. B., Medeiros, H. B. O., & Fukuda, D. H. (2011). Warm-up, Stretching, and Cool-down Strategies for Combat Sports. Strength and Conditioning Journal, 33(6), 71-79. doi:Doi 10.1519/Ssc.0b013e31823504c9

Cramer, J. T., Housh, T. J., Weir, J. P., Johnson, G. O., Coburn, J. W., & Beck, T. W. (2005). The acute effects of static stretching on peak torque, mean power output, electromyography, and mechanomyography. Eur J Appl Physiol, 93(5-6), 530-539. doi:10.1007/s00421-004-1199-x

Curry, B. S., Chengkalath, D., Crouch, G. J., Romance, M., & Manns, P. J. (2009). Acute effects of dynamic stretching, static stretching, and light aerobic activity on muscular performance in women. J Strength Cond Res, 23(6), 1811-1819. doi:10.1519/JSC.0b013e3181b73c2b

Dalrymple, K. J., Davis, S. E., Dwyer, G. B., & Moir, G. L. (2010). Effect of static and dynamic stretching on vertical jump performance in collegiate women volleyball players. J Strength Cond Res, 24(1), 149-155. doi:10.1519/JSC.0b013e3181b29614

Egan, A. D., Cramer, J. T., Massey, L. L., & Marek, S. M. (2006). Acute effects of static stretching on peak torque and mean power output in National Collegiate Athletic Association Division I women's basketball players. J Strength Cond Res, 20(4), 778-782. doi:10.1519/R-18575.1

Fletcher, I. M., & Monte-Colombo, M. M. (2010). An investigation into the possible physiological mechanisms associated with changes in performance related to acute responses to different preactivity stretch modalities. Appl Physiol Nutr Metab, 35(1), 27-34. doi:10.1139/H09-125

Gonzalez-Rave, J. M., Machado, L., Navarro-Valdivielso, F., & Vilas-Boas, J. P. (2009). Acute effects of heavy-load exercises, stretching exercises, and heavy-load plus stretching exercises on squat jump and countermovement jump performance. J Strength Cond Res, 23(2), 472-479. doi:10.1519/JSC.0b013e318198f912

Greenfield, B. H., Bridges, P. H., Phillips, T. A., Drill, A. N., Gaydosik, C. D., Krishnan, A., & Yandziak, H. J. (2014). Exploring the experiences of novice clinical instructors in physical therapy clinical education: a phenomenological study. Physiotherapy, 100(4), 349-355. doi:10.1016/

Holt, B. W., & Lambourne, K. (2008). The impact of different warm-up protocols on vertical jump performance in male collegiate athletes. J Strength Cond Res, 22(1), 226-229. doi:10.1519/JSC.0b013e31815f9d6a

Hopkins, W. G. (2000). Measures of reliability in sports medicine and science. Sports Med, 30(1), 1-15.

Hough, P. A., Ross, E. Z., & Howatson, G. (2009). Effects of dynamic and static stretching on vertical jump performance and electromyographic activity. J Strength Cond Res, 23(2), 507-512. doi:10.1519/JSC.0b013e31818cc65d

Judge, L. W., Bellar, D. M., Gilreath, E. L., Petersen, J. C., Craig, B. W., Popp, J. K., . . . Simon, L. S. (2013). An examination of preactivity and postactivity stretching practices of NCAA division I, NCAA division II, and NCAA division III track and field throws programs. J Strength Cond Res, 27(10), 2691-2699. doi:10.1519/JSC.0b013e318280c9ac

Kallerud, H., & Gleeson, N. (2013). Effects of stretching on performances involving stretch-shortening cycles. Sports Med, 43(8), 733-750. doi:10.1007/s40279-013-0053-x

Kay, A. D., & Blazevich, A. J. (2012). Effect of acute static stretch on maximal muscle performance: a systematic review. Med Sci Sports Exerc, 44(1), 154-164. doi:10.1249/MSS.0b013e318225cb27

Little, T., & Williams, A. G. (2006). Effects of differential stretching protocols during warm-ups on high-speed motor capacities in professional soccer players. J Strength Cond Res, 20(1), 203-207. doi:10.1519/R-16944.1

Murphy, J. C., Mccrory, J. L., Nagle, E., & Robertson, R. J. (2010). Effect of single set dynamic and static stretching exercise on jump height in college age recreational athletes. Int J Exerc Sci, 3(4), 214-224.

Murphy, J. R., Di Santo, M. C., Alkanani, T., & Behm, D. G. (2010). Aerobic activity before and following short-duration static stretching improves range of motion and performance vs. a traditional warm-up. Applied Physiology Nutrition and Metabolism-Physiologie Appliquee Nutrition Et Metabolisme, 35(5), 679-690.

Nakagawa, S. (2004). A farewell to Bonferroni: the problems of low statistical power and publication bias. Behavioral Ecology, 15(6), 1044-1045.

Perneger, T. V. (1998). What's wrong with Bonferroni adjustments. BMJ, 316(7139), 1236-1238.

Pinto, M. D., Wilhelm, E. N., Tricoli, V., Pinto, R. S., & Blazevich, A. J. (2014). Differential effects of 30-s vs. 60-s static muscle stretching on vertical jump performance Effects of volume stretching on jump performance. J Strength Cond Res, 28, 3440-3446. doi:10.1519/JSC.0000000000000569

Power, K., Behm, D., Cahill, F., Carroll, M., & Young, W. (2004). An acute bout of static stretching: Effects on force and jumping performance. Med Sci Sports Exerc, 36(8), 1389-1396.

Robbins, J. W., & Scheuermann, B. W. (2008). Varying amounts of acute static stretching and its effect on vertical jump performance. J Strength Cond Res, 22(3), 781-786. doi:10.1519/JSC.0b013e31816a59a9

Siatras, T. A., Mittas, V. P., Mameletzi, D. N., & Vamvakoudis, E. A. (2008). The duration of the inhibitory effects with static stretching on quadriceps peak torque production. J Strength Cond Res, 22(1), 40-46. doi:10.1519/JSC.0b013e31815f970c

Simic, L., Sarabon, N., & Markovic, G. (2013). Does pre-exercise static stretching inhibit maximal muscular performance? A meta-analytical review. Scand J Med Sci Sports, 23(2), 131-148. doi:DOI 10.1111/j.1600-0838.2012.01444.x

Swain, D. P., American College of Sports Medicine., & American College of Sports Medicine. (2014). ACSM's resource manual for Guidelines for exercise testing and prescription (7th ed.). Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins.

Tanner, R. K., Gore, C. J., & Australian Institute of Sport. (2013). Physiological tests for elite athletes (2nd ed.). Champaign, IL: Human Kinetics.

Torres, E. M., Kraemer, W. J., Vingren, J. L., Volek, J. S., Hatfield, D. L., Spiering, B. A., . . . Maresh, C. M. (2008). Effects of stretching on upper-body muscular performance. J Strength Cond Res, 22(4), 1279-1285. doi:10.1519/JSC.0b013e31816eb501

Tsolakis, C., & Bogdanis, G. C. (2012). Acute effects of two different warm-up protocols on flexibility and lower limb explosive performance in male and female high level athletes. J Sports Sci Med, 11(4), 669-675.

Tsolakis, C., Douvis, A., Tsigganos, G., Zacharogiannis, E., & Smirniotou, A. (2010). Acute Effects of Stretching on Flexibility, Power and Sport Specific Performance in Fencers. Journal of Human Kinetics, 26, 105-114.

Unick, J., Kieffer, H. S., Cheesman, W., & Feeney, A. (2005). The acute effects of static and ballistic stretching on vertical jump performance in trained women. J Strength Cond Res, 19(1), 206-212. doi:10.1519/R-14843.1

Vetter, R. E. (2007). Effects of six warm-up protocols on sprint and jump performance. J Strength Cond Res, 21(3), 819-823. doi:10.1519/R-20296.1

Young, W., Elias, G., & Power, J. (2006). Effects of static stretching volume and intensity on plantar flexor explosive force production and range of motion. J Sports Med Phys Fitness, 46(3), 403-411.

Young, W., & Elliott, S. (2001). Acute effects of static stretching, proprioceptive neuromuscular facilitation stretching and maximum voluntary contractions on explosive force production and jumping performance. Res Q Exerc Sport, 72(3), 273-279. doi:10.1080/02701367.2001.10608960



  • There are currently no refbacks.

Copyright (c) 2016 Ekim Pekünlü, İsa Sağıroğlu, Cem Kurt, İlbilge Özsu

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright © 2015 - 2023. European Journal of Physical Education and Sport Science (ISSN 2501 - 1235) is a registered trademark of Open Access Publishing Group. All rights reserved.

This journal is a serial publication uniquely identified by an International Standard Serial Number (ISSN) serial number certificate issued by Romanian National Library (Biblioteca Nationala a Romaniei). All the research works are uniquely identified by a CrossRef DOI digital object identifier supplied by indexing and repository platforms. All authors who send their manuscripts to this journal and whose articles are published on this journal retain full copyright of their articles. All the research works published on this journal are meeting the Open Access Publishing requirements and can be freely accessed, shared, modified, distributed and used in educational, commercial and non-commercial purposes under a Creative Commons Attribution 4.0 International License (CC BY 4.0).