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Abstract: 

This study explored how dynamic mathematics software package called GeoGebra 

contributed to participants’ learning and understanding of equations involving 

modulus functions. The research followed a case study approach with a small group of 

six participants in a Sixth Form classroom in England. The research focused on 

participants’ experiences as they used technology to support their understanding of the 

concept: modulus functions. It highlights how participants used GeoGebra to correct 

some misconceptions about equations involving modulus functions and also investigate 

the source of some spurious answers obtained when using algebraic methods to solve 

the equations. The focus of the study was on how participants utilised GeoGebra to 

address misconceptions and perceptions about modulus functions. The main research 

questions that guided this study focused on how participants used GeoGebra to 

support their understanding of modulus functions and how GeoGebra related and 

contributed towards their whole learning experiences. The study found that GeoGebra 

provided a medium of visualisation that linked abstract aspects of modulus functions 

with graphical illustrations. Conclusion: Working with GeoGebra extended 

participants’ understanding of modulus functions. 
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1. Introduction 

 

The new A Level Curriculum (first taught in September 2017) states: “The use of 

technology, in particular mathematical and statistical graphing tools and spreadsheets, must 

permeate the study of AS and A Level Mathematics”. This study investigated the use of a 

multiple representational software GeoGebra, to explore solutions of equations 

involving modulus functions. The study is a follow up to a research study that focused 

on participants’ experiences of using GeoGebra to understand the concept of modulus 
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functions. The study highlights some of the common errors students make when 

solving equations involving modulus functions. This follow up study continued to use 

GeoGebra to provide a multiple representation platform to aide in the understanding of 

modulus functions and investigate solutions of equations that involve modulus 

functions. 

  Learners experience problems in solving equations that involve modulus 

functions. The MEI examiners’ reports highlights some of the common errors observed 

while candidates attempted to solve |2x -1| = |x|. The June 2011 examiners’ report 

notes: 

 Candidates attempted this by considering ±(2x - 1) = ± x, some thinking that this led to 

four different possibilities, and indeed finding more than two solutions by faulty algebra. A few 

squared both sides, found the correct quadratic, and solved it by factorising or formula. Some had 

no idea how to start and tried to manipulate the equations with modulus signs, often ending 

with the answer |x| = 1 or x = ±1. Others thought the modulus signs implied inequalities and 

either replaced the equality sign with the inequality sign or introduced the inequality sign in 

their answers (Examiners Report MEI Core 3 June 2011, Question 1). 

 Gono (2016) observed some spurious answers obtained from faulty mathematical 

calculations of |2x − 1| = 3x, when learners solved the equation algebraically. By 

considering 2x - 1 = 3x and -2x + 1 = 3x, the participants came up with two solutions 

instead of one. The Examiners’ report and Gono’s (2016) observations highlight 

problems that participants face when solving equations involving modulus functions.  

 GeoGebra was chosen because of its interface that displays mathematical 

concepts in multiple representational formats on the same screen. The use of multiple 

representations has been strongly connected with the complex process of learning in 

mathematics, and more particularly, with seeking participants’ better understanding of 

important mathematical concepts. GeoGebra provided a medium for visualisation that 

linked the abstract aspects of modulus function equations with graphical illustrations.  

 

1.1 The role of multiple representations on teaching and learning 

Socio-cultural discourses have increasingly recognised multiple representations as 

central to the appropriation of knowledge through representational activity. The 

discourse on the nature and role of representational environments is well established, 

with several key texts devoted solely to this theme (Confrey, 1990; Janvier 1987, Kaput 

1989). 

 Research in cognitive science and mathematics education has focused on the 

important role played by multiple representations in mathematics learning (Mehdiyev, 

2009; Ruthven et al, 2008; Yerushalmy & Schwartz, 1999; Dufour-Janvier et al, 1987; 

Kaput 1989). Yerushalmy & Schwartz (1999), claim that multiple representations allow 

learners to use a rich set of both symbolic and graphical representations, hence building 

a richer and deeper understanding of mathematics concepts. Panasuk (2010) cites 

research studies (Ainsworth et al 2002, Lowrie, 2001 and Swafford & Langrall, 2000) 

that have focused on multiple representations and their subsequent impact on learning 

mathematical concepts. Stenning, Cox & Oberlander (1995) cited in Ainsworth et al 
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(1999) gave learners graphical calculators and found that high performing participants 

benefited from using graphical calculators while lower performing participants 

preferred textual instructions. Ozgun-Koca (2001) argues that the use of multiple 

representations has unavoidable contributions on meaningful algebra learning. Bayazit 

and Aksoy (2007) concur that representing the same concept in two different ways on 

the same screen promotes learners’ depth of understanding and development of 

knowledge across the representations. 

 Cordova & Lepper (1996), Cox et al. (2003) and Dikovic (2009) found that 

multiple representations positively affect pupils’ attitudes and understanding of 

mathematical concepts. Dufour-Janvier et al (1987), investigating the accessibility of 

representations concluded that multiple representations mitigate learning difficulties by 

making mathematics more attractive and interesting. Duncan (2010) found that multiple 

representations stimulate investigations and help participants develop their own 

learning skills. Studies by Ozgun-Koca (2001) and Pitts (2003) provide evidence about 

the effectiveness of multiple representations based instruction in college algebra course. 

They found that the use of multiple representations enabled participants to establish 

connections between varieties of representational modes.  

 Schoenfeld, Smith and Arcavi (1993) cited in Ainsworth (1999) examined one 

participant’s understanding of mathematical functions using a multi-representational 

environment that exploited both algebraic and graphical representations to support 

learning. The participant’s increasingly successful performance led the researchers to 

conclude that she had mastered fundamental components of the learning domain by 

exploiting multiple representations involving algebra and graphs. Findings from 

research studies conducted by Orton (1983) and Tall (1985) indicate that the use of 

multiple representations is advantageous in promoting conceptual understanding of 

graphs of derivatives.  

 However, there are some noted weaknesses or disadvantages of using multiple 

representations in mathematics teaching and learning. Advocates of a constructivist 

approach to education argue that dynamically linking representations through use of 

technology leaves a learner too passive in the process (Ainsworth 1999). Ainsworth 

argues that such dynamic links discourage reflection on the nature of the 

transformation, leading to failure by the learner to construct the required 

understanding. Participants can see things dynamically changing but might not 

understand how they are changing. 

 

2. Theoretical Frameworks 

 

This study follows an Interpretive Phenomenological Analysis (IPA) approach to gain 

insight into participants’ experiences while using technology to solve equations 

involving modulus functions. Interpretive phenomenological analysis is an approach to 

qualitative enquiry (Smith et al 2012). IPA is usually used to study small numbers of 

participants aiming to reveal the experience of each individual. It is concerned with the 

detailed examination of lived experience. The rationale for using IPA in this research 
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was to explore and describe how learners experienced technology in the process of 

solving equations that involved modulus functions. With the classroom setting as the 

direct source of data an IPA approach was appropriate to capture real-time experiences 

as learners were at work. 

 

3. Methods  

 

The research design selected for this study incorporated IPA theories within a socio-

constructivists paradigm, in an attempt to explore how participants interacted with 

technology in solving equations involving modulus functions. Focusing on a small 

group of participants, working with GeoGebra to understand a specific phenomenon 

suited a case study approach. Data was collected through screencast video recordings 

and compiled field notes. The IPA approach allowed for an in-depth understanding of 

the experiences and perceptions of participants as they used GeoGebra to explore 

equations involving modulus functions and how they developed an understanding of 

the concept.  

 Data was drawn from multiple sources such as observations, interviews and 

video materials. To understand how participants used GeoGebra to enhance their 

understanding of solutions of modulus functions, data was collected from participants’ 

screencast and audio recordings on their laptops. Pirie (1996) cited in Powell et al. 

(2003) observes that videotaping a classroom phenomenon is likely to be the least 

intrusive, yet most inclusive way to study the phenomenon. The screencast recording 

software (JING) captured all on-screen activities highlighting a variety of approaches 

employed by participants.  

 

3.1 Data Analysis 

On-screen activities and conversations were recorded during each activity and an IPA 

approach was used to analyse the data (Smith et al 2012). Data analysis started with 

organisation and description, modelled around an interpretive phenomenological 

analysis framework (Smith et al, 2012). Initially, the activities in the learning 

arrangements served as the units of analysis.  

 

4. Activities 

 

4.1 Solving equations involving modulus functions 

The first method investigated was the use of the mathematical definition of an absolute 

value function. An absolute value |x| of a real number x is the non-negative value of x. 

The absolute value |x| = x for positive x and |-x| = x for a negative x. This activity 

highlights the success and failure when this definition is applied in solving equations 

that involve modulus functions, as depicted in participants’ work. The activities in this 

section focused on participant’s experiences as they solved equations involving 

modulus functions algebraically and graphically. Participants completed several tasks 
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but this paper highlights a selected few cases that provide rich data relevant to the focus 

of this discussion. 

 

Case 1: Solving |x + 2| = 2x + 1  

  

 
Figure 1.1: Graphs of f(x) = |x + 2| and y = 2x + 1 

 

The participant used positive and negative properties of an absolute value to split the 

equation into two cases (See handwritten insert above) and got two solutions x = 1 and 

x = -1.The participant did not see anything mathematically wrong with the calculation. 

However, when asked to check which of the two solutions was valid, substituting x = -1 

into the equation |-1+2|=2(-1) +1 gave |1| = -1. This contradicted the definition of an 

absolute value. Graphically representing the same functions in GeoGebra (Figure 1.1) 

clearly illustrated that there is only one point of intersect. The line y = 2x + 1 intersects 

with f(x) = - x - 2 outside the range of f(x) = |x + 2| (see Figure 1.1), thus rendering the 

solution x = -1 invalid. The only valid solution for |x + 2| = 2x + 1 is x = 1. 

 

 
Figure 1.2: Graph of y = |2x + 1| and y = x + 2 
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 The same algebraic method is however successfully applied to solve a similar 

equation |2x + 1| = x + 2. Applying exactly the same algebraic steps as in Case 1 above 

yields the solutions x = 1 and x = -1 which are both valid.  

 Graphical illustrations show the difference between Figure 1.1 and 1.2, which 

could not be identified by using the mathematical definition of modulus functions. 

 

Case 2: f(x) = |x - 2| and g(x) = |4x - 3|. Find the coordinates of the points where f(x) and g(x) 

intersect. 

Figure 1.3: Graphs of f(x) and g(x) displayed on the same screen 

 

 To find the points of intersection, some participants solved the equation |x – 2| = 

|4x – 3|. Similar to the first activity above, participant used the definition of absolute 

value functions and considered cases where |x–2|= x–2; |x–2| =-x+2 and the same for 

|4x – 3| (see Case 2). The participant’s work copied above clearly identifies four 

solutions (1/3, -4/3), (1, -1), (1, 1) and (1/3, 4/3). When probed further, the participant 

was of the opinion that there were four solutions to this equation, a view that was 

changed when the functions were presented on GeoGebra.  

 When the functions f(x) = |x – 2| and g(x) = |4x – 3| were entered in GeoGebra 

(Figure 1.3), the graphical representations clearly showed that there are only two points 

of intersection at A (1/3, 4/3) and B (1, 1). This prompted the participant to investigate 

the disparity between solutions from the algebraic calculations and from graphical 

representations. Each line was drawn representing all definitions used by the 

participant in the algebraic calculations i.e. y = 4x – 3; y = -4x + 3; y = |x – 2| and y = -x + 

2 (See Figure 1.4). The graphical representations clearly show that the functions f(x) and 

g(x) are greater than zero for all values of x. Points C and D lie outside the range, hence 

not solutions to the equation |x – 2| = |4x – 3|.  
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Figure 1.4: The graphs of f(x) = |x – 2| and g(x) = |4x – 3| 

 

 The graphical representations in Figure 1.4 brings to fore the aspects of domain 

and range of modulus functions that are important to consider when solving equations 

involving modulus functions. From the graphical representations, participants 

developed a broader understanding of the mathematical definitions of modulus 

functions. The graphical representations in GeoGebra shows that the modulus function 

f(x) = |x – 2| is also defined mathematically as  

 

 f(x) = {
            
             

.  

 

 This mathematical definition clearly shows that the domain is for all values of x 

where x Ԑ R. The graphical representation also shows that the range of f(x) ≥ 0. The 

function g(x) = |4x – 3| is represented by  

 

 g(x) ={
            

 

 

             
 

 

’ range g(x) ≥ 0.  

 

 The use of GeoGebra to facilitate the visualisation of the abstract concept of 

modulus functions enhanced the learner’s overall understanding of the concept of 

modulus functions. Bayazit and Aksoy (2007) argue that representing the same concept 

in two different ways promotes participant’s depth of understanding and development 

of the knowledge. 
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Case 3: Solve the equation |x| = |2x + 1| 

Another algebraic method of solving equations involving modulus functions emerged 

in this activity. The participant used the mathematical definition of modulus functions 

(that is |x| =√(x2)) to solve the equation |x| = |2x + 1| and correctly obtained correct 

solutions. 

      

 
Figure 1.5: Illustration of |x| = |2x + 1| 

 

Case 4: Solve the equation |x – 2| = -3.  

However applying the same definition to solve |x – 2| = -3, creates a false impression 

that the graphs of f(x)=|x – 2| and g(x) = -3 intersect at two distinct points.  

 

 
Figure 1.6: The graph of f(x) = |x – 2| and y = -3. 

 

 A visual display of these abstract functions (Figure 1.6) clearly outlines the 

limitations of the method of squaring when solving equations involving modulus 

functions. Figure 4.6 displays the graphical representations of f(x) = |x – 3| and the line 

y = -3. The graphical representation clearly shows that the two graphs do not intersect. 

Graphical representations and discussion with other participants highlighted the fact 

that an absolute value function cannot be equated to a negative constant. 
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 This study also observed that using graphs to solve equations involving modulus 

functions was mostly a method of last resort. Graphical representations were only used 

to check solutions from the algebraic method. It was not a method of first choice for 

most participant.  

 

5. Findings 

 

It is so often that participants treat equations that involve modulus functions like 

ordinary equations without considering the actual mathematical definition of modulus 

functions.  

 Using technology to solve equations involving modulus functions allowed 

participants to pay attention to detail, while at the same time answering the question 

“Why?” Throughout the investigations, participants looked at various methods of 

solving equations that involved modulus functions and weighed the merits and 

demerits of each method. They highlighted the successes and failure of each algebraic 

method.  

 Investigations using graphical representations on GeoGebra allowed participants 

to come up with generalised results, which they noted down: 

 Equations of the form |x + a| = x + b, have no roots if a > b, but will have only 

one root if a < b and an infinite set of roots where x  R and x ≥ a when a = b.  

 Equations of the form |x + a| = |x + b| will have only one solution.  

 On the other hand, |ax + b| = cx + d has one solution if a < c. However, no 

conclusive generalisation was obtained on the effect of b and d in the case where 

a > c. The few examples looked at seemed to vary from question to question.  

 In general, participants began to appreciate the difference between the equations 

|x + 2| = 2x + 1 and |2x + 1| = x + 2. 

 

6. Conclusions 

 

There is a wide research base that concurs with the findings of this study that 

technology should be embedded within the teaching and learning of mathematics. The 

use of GeoGebra allowed participants to develop a deeper understanding of equations 

involving modulus functions. It aided understanding and enabled problems to be 

addressed that would have been impractical or inefficient to tackle.  

 The selected examples highlighted the varying errors that learners make when 

solving equations involving modulus functions. The use of multiple representations 

helped participants to investigate why the algebraic methods sometimes yielded 

spurious answers.  

 Participants were exposed to multiple representations of modulus functions. For 

example, f(x) = |x – 2| is the same as f(x) ={
            
             

. This was complimented by 

the visual representation of the same function on the GeoGebra screen, hence 

consolidating the link between the two algebraic representations.  
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 There is a drive by government to embed technology in the teaching of 

mathematics. This study focused on equations involving modulus function with a small 

number of participants. The impact of technology on the teaching and learning of 

mathematics cannot be generalised from this study. Further research focusing on the 

impact of technology needs to be done. There is need to embed multiple representations 

in the teaching of this topic, to enhance the understanding of what modulus functions 

are. 

 Participants should be encouraged to sketch graphs first, to see the number of 

solutions and identify where they are located. However, Yerushalmy’s (1991) research 

suggests that appreciating the links across multiple representations is not automatic. 

Yerushalmy (1991) found that even after extensive experience with multi-

representational learning, designed to teach understanding of functions, only twelve 

per cent of participants gave answers that involved both numerical and visual 

representations. Yerushalmy observed that most answers reflected the use of one 

representation and a neglect of the other.  
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